Complementary Tree Domination in Jahangir Graph J_{2,m}

P. Vidhya

Department of Mathematics E.M.G. Yadava Women's College, Madurai.

=

Abstract

A set *D* of a graph G = (V,E) is a dominating set if every vertex in V - D is adjacent to some vertex in *D*. The domination number $\gamma(G)$ of *G* is the minimum cardinality of a dominating set. A dominating set *D* is called a complementary tree dominating set if the induced sub graph $\langle V - D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of *G* and is denoted by $\gamma_{ctd}(G)$. In this paper, results on complementary tree domination number γ_{ctd} , total complementary tree domination number γ_{ctd} and connected complementary tree γ_{cctd} in Jahangir graph J_{2,m} are found

Keywords: Complementary tree domination number, total, connected complementary tree domination number, Jahangir graphs.

1 Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. The concept of domination was first studied by ore [6]. A set $D \subseteq V$ is said to a dominating set of G, if every vertex in V -D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of complementary tree domination was into deiced by S. Muthammai M. Bhanumathi and P. Vidhya in [5]. A dominating set $D \subseteq V$ is called a complementary tree dominating (ctd) set, if the sub graph $\langle V - D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$.

A dominating set D_t is called a total complementary tree dominating set of every vertex $v \in V$ is adjacent to an element of D_t and $\langle V - D_t \rangle$ is a tree. The minimum cardinality of a total complementary tree dominating set (*tctd*) is called the total complementary tree domination number of *G* and is denoted $\gamma_{tctd}(G)$.

A dominating set D_c is called complementary tree dominating set (*cctd*) if the induced sub graph $\langle D_c \rangle$ is connected. The connected complementary tree domination number $\gamma_{cctd}(G)$ is the minimum cardinality of *cctd* set. In this paper, complementary tree domination number(γ_{ctd}), total and connected complementary tree domination number in Jahangir graphs are found

Definition 1 Jahangir graphs $J_{n,m}$ for $m \ge 3$, is a graph on nm + 1 vertices i.e., a graph consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of C_{nm} distance n to each other on C_{nm} .

Example 1 Figure 1 shows Jahangir graph $J_{2,8}$. It appears on Jahangir's tomb in his mausoleum. It lies in 5 kilometer north-wsit of Lahore, Pakistan across the river Ravi [1].

In Figure 2 $\gamma_{ctd}(J_{2,m}) = 2$ where $D = \{3, 6\}$.

2 Complementary Tree Domination Number, Total and Connected Domination Number of $J_{2,m}$

In this section, we study γ_{ctd} , γ_{tctd} and γ_{cctd} in Jahangir graphs $J_{2,m}$.

Remark 1 Let v_{2m+1} be the label of the center vertex and $v_1, v_2, ..., v_{2m}$ be the label v of the vertices that incident clockwise on cycle C_{2m} so that $deg(v_1) = 3$.

Theorem 2.1 For m \geq 3 the γ_{ctd} , $(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil$

Proof. Let v_{2m+1} be the label of the center vertex and v_1, v_2, \ldots, v_{2m} be the label of the vertices that incident clockwise on cycle C_{2m} so that $deg(v_1) = 3$. Let *D* be a minimum *ctd* set of $J_{2,m}$. Therefore $|D| = \gamma_{ctd}(J_{2,m})$.

Case (i) $2m = 0 \pmod{3}$

Let $D = \{v_3, v_6, v_9, \dots, v_{3i}\}$ where $i = 1, 2, \dots, m$ Then D is a minimum ctd-set of $J_{2,m}$ and 3i = 2m. Since v_3 dominates v_2 and v_4 , v_6 dominates v_5 and v_7 etc and v_{3i} dominates v_{3i-1} and v_1 and odd label vertices dominated by the central vertex v_{2m+1} . Also $< V - D \ge T$, Where T is a tree.

Therefore
$$|D| = \gamma_{ctd}(G) = \left|\frac{2m}{3}\right|$$

Let $D = [v_1, v_4, \dots, v_{3i-2}]$ is a minimum ctd-set of $J_{2,m}$. If 3i - 2 = 2m, then $|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil$

If $3i - 2 \neq 2m$, then v_{2m} is a isolate vertex in $\langle V - D \rangle$ so that $v_{2m} \in D$.

Therefore
$$|D| = \left\lceil \frac{2m}{3} + 1 \right\rceil$$

$$=\left\lceil \frac{2m}{3} \right\rceil + 1$$

Which contradicts the minimality

Let $D = [v_2, v_5, ..., v_{3i-1}]$ is a minimum ctd-set of $J_{2,m}$. If 3i - 1 = 2m, then $|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil$ If $3i - 2 \neq 2m$, then v_{2m} is a dominated by v_{3i-1} and v_1 is dominated by v_2

Therefore
$$|D| = \gamma_{ctd}(J_{2,m}) = \left[\frac{2m}{3}\right]$$

Case (ii) $2m = 1 \pmod{3}$

Let $D = \{v_3, v_6, \dots, v_{3i}\}$ is a minimum ctd-set of $J_{2,m}$. Hence v_1 is not dominated by D so that $v_{2m} \in D$.

Therefore
$$|D| = \left\lceil \frac{2m}{3} + 1 \right\rceil$$

$$=\left\lceil \frac{2m}{3}\right\rceil$$

Let $D = [v_1, v_4, v_7, ..., v_{3i-2}]$ is a minimum ctd-set of $J_{2,m}$. If 3i - 2 = 2m, then D is a minimal ctd-set of $J_{2,m}$ then $|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil$ If $3i - 2 \neq 2m$, then v_{2m} is a isolate in $\langle V - D \rangle$, so that $v_{2m} \in D$.

Therefore
$$|D| = \left\lceil \frac{2m}{3} + 1 \right\rceil$$
$$= \left\lceil \frac{2m}{3} \right\rceil + 1$$

Which contradicts the minimality

Let
$$D = [v_2, v_5, v_8, \dots, v_{3i-1}]$$

If $3i - 1 = 2m$, then $|D| = \left\lceil \frac{2m}{3} \right\rceil$
If $3i - 2 \neq 2m$, then v_{i-1} is a dom

If $3i - 2 \neq 2m$, then v_{2m} is a dominated by v_{3i-1} and v_1 is dominated by v_2

Therefore
$$|D| = \left\lceil \frac{2m}{3} \right\rceil$$

Case (iii) $2m = 1 \pmod{3}$

Let
$$D = \{v_1, v_4, \dots, v_{3i-2}\}$$

If $3i - 2 = 2m$ or $3i - 2 = 2m - 2$ then $|D| = \left\lceil \frac{2m}{3} \right\rceil$

Let
$$D = \{v_2, v_3, \dots, v_{3i-1}\}$$

If $3i - 1 = 2m$ or $3i - 1 = 2m - 1$ then $|D| = \frac{2m}{3} = \left\lceil \frac{2m}{3} \right\rceil$

From the above three cases

$$\gamma_{ctd}(J_{2,m}) = \left|\frac{2m}{3}\right|, \text{ for } m \ge 3$$

Total Complementary tree domination of $J_{2,m}$

Theorem 2.2 For m>3, $\gamma_{tctd}(J_{2,m}) > \gamma_{ctd}(J_{2,m})$

Proof:

Let D_t be a minimum tctd-set of $J_{2,m}$.

Case (i) m is odd

Let $D_t = \{v_1, v_2, v_5, v_6, \dots, v_{2m-1}, v_{2m}\}$

$$\therefore |D_t| = m + 1$$

i.e., $= \frac{2m}{2} + 1$
 $= \left\lceil \frac{2m}{2} \right\rceil + 1$
 $= \left\lceil \frac{2m}{2} \right\rceil$

Case (ii) m is even

Let $D_t = \{v_1, v_2, v_5, v_6, \dots, v_{2m-1}, v_{2m}\}$

$$\therefore |D_t| = m$$
$$= \left\lceil \frac{2m}{2} \right\rceil$$

Which is minimum tetd set of $J_{2,m}$.

$$\therefore \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{2} \right\rceil > \left\lceil \frac{2m}{3} \right\rceil$$
$$= \gamma_{ctd}(J_{2,m})$$

Connected complementary tree domination of $J_{2,m}$.

Theorem 2.3 For $m \ge 3$, $\gamma_{cctd}(J_{2,m}) = 2m - 2$

Proof. We know $\gamma_{cctd}(C_m) = m - 2$ for $m \ge 3$

Let $D_c = \{v_1, \dots, v_{2m-3}, v_{2m+1}\}$. Where D_c is the minimum ctd-set of c.

Here v_{2m} is dominate by v_1 , v_{2m-3} dominate v_{2m-2} and v_{2m-1} is dominate by v_{2m+1} .

$$|D_c| = 2m - 3 + 1 = 2m - 2$$

∴ γ_{cctd}(J_{2,m}) = 2m - 2

References:

- K. Ali, E. T. Baskoro and I. Tomeseu, On the Ramzey number of Paths and Jahangir graph J_{3,m}. 3rd International Conference on 21st Century Mathematics 2007, GC University Lahoor Pakistan, March 2007.
- [2] T. W. Haynes. S. T. Hedetniem, P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [3] S. T. Hedetniemi, R. Laskar, Domination in graphs, *Graph Theory and Combinatories: Proceedings of the Cambridge Combinatorical Conference, Academic press, London,* 1984.
- [4] D. A. Mojdeh and A. N. Ghameshlou Domination in Jahangir Graph J_{2,m}, Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 24. 1193-1199.
- [5] S. Muthammai, M. Bhanumathi and P. Vidhya Complementary tree domination Number of a Graph, Int. Mathematical forum, Vol. 6, 2011, no. 26, 1273-1282.
- [6] O. Ore, Theory of Graphs, Amer. Math. SOC, Collog. Public, 38, (1962).