Complementary Tree Domination in Jahangir Graph $\mathbf{J}_{2, \mathrm{~m}}$

P. Vidhya
Department of Mathematics
E.M.G. Yadava Women's College, Madurai.
$=$

Abstract

A set D of a graph $G=(V, E)$ is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced sub graph $\langle V-D\rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. In this paper, results on complementary tree domination number $\gamma_{\text {ctd }}$, total complementary tree domination number $\gamma_{\text {tctd }}$ and connected complementary tree $\gamma_{\text {cctd }}$ in Jahangir graph $\mathrm{J}_{2, \mathrm{~m}}$ are found

Keywords: Complementary tree domination number, total, connected complementary tree domination number, Jahangir graphs.

1 Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. The concept of domination was first studied by ore [6]. A set $D \subseteq V$ is said to a dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of complementary tree domination was into deiced by S. Muthammai M. Bhanumathi and P. Vidhya in [5]. A dominating set $D \subseteq V$ is called a complementary tree dominating (ctd) set, if the sub graph < $V-D>$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$.

A dominating set D_{t} is called a total complementary tree dominating set of every vertex v $\in V$ is adjacent to an element of D_{t} and $\left\langle V-D_{t}\right\rangle$ is a tree. The minimum cardinality of a total complementary tree dominating set ($t c t d$) is called the total complementary tree domination number of G and is denoted $\gamma_{\text {tctd }}(G)$.

A dominating set D_{c} is called complementary tree dominating set ($c c t d$) if the induced sub graph $\left\langle D_{c}\right\rangle$ is connected. The connected complementary tree domination number $\gamma_{c c t d}(G)$ is the minimum cardinality of cctd set. In this paper, complementary tree domination number $\left(\gamma_{c t d}\right)$, total and connected complementary tree domination number in Jahangir graphs are found

Definition 1 Jahangir graphs $J_{n, m}$ for $m \geq 3$, is a graph on $n m+1$ vertices i.e., a graph consisting of a cycle $C_{n m}$ with one additional vertex which is adjacent to m vertices of $C_{n m}$ distance n to each other
on $C_{n m}$.

Example 1 Figure 1 shows Jahangir graph $J_{2,8}$. It appears on Jahangir's tomb in his mausoleum. It lies in 5 kilometer north-wsit of Lahore, Pakistan across the river Ravi [1].

Figure 1: $\boldsymbol{J}_{2,8}$

Example 2

Figure 2: $\boldsymbol{J}_{2, m}$
In Figure $2 \gamma_{\text {ctd }}\left(J_{2, m}\right)=2$ where $D=\{3,6\}$.

2 Complementary Tree Domination Number, Total and Connected Domination Number of $\boldsymbol{J}_{2, m}$

In this section, we study $\gamma_{c t d}, \gamma_{t c t d}$ and $\gamma_{c c t d}$ in Jahangir graphs $J_{2, m}$.
Remark 1 Let $v_{2 m+1}$ be the label of the center vertex and $v_{1}, v_{2}, \ldots . ., v_{2 m}$ be the label v of the vertices that incident clockwise on cycle $C_{2 m}$ so that $\operatorname{deg}\left(v_{1}\right)=3$.

Theorem 2.1 For $\mathrm{m} \geq 3$ the $\gamma_{c t d},\left(J_{2, m}\right)=\left\lceil\frac{2 m}{3}\right\rceil$
Proof. Let $v_{2 m+1}$ be the label of the center vertex and $v_{1}, v_{2}, \ldots \ldots, v_{2 m}$ be the label of the vertices that incident clockwise on cycle $C_{2 m}$ so that $\operatorname{deg}\left(v_{1}\right)=3$. Let D be a minimum ctd set of $J_{2, m}$. Therefore $|D|=\gamma_{c t d}\left(J_{2, m}\right)$.

Case (i) $2 m=0(\bmod 3)$
Let $D=\left\{v_{3}, v_{6}, v_{9}, \ldots ., v_{3 i}\right\}$ where $i=1,2, \ldots, m$ Then D is a minimum ctd-set of $J_{2, m}$ and $3 i=2 m$. Since v_{3} dominates v_{2} and v_{4}, v_{6} dominates v_{5} and v_{7} etc and $v_{3 i}$ dominates $v_{3 i-1}$ and v_{1} and odd label vertices dominated by the central vertex $v_{2 m+1}$. Also $\langle V-D>\cong T$, Where T is a tree.

$$
\text { Therefore }|D|=\gamma_{c t d}(G)=\left\lceil\frac{2 m}{3}\right\rceil
$$

Let $D=\left[v_{1}, v_{4}, \ldots, v_{3 i-2}\right]$ is a minimum ctd-set of $J_{2, m}$.
If $3 i-2=2 m$, then $|D|=\gamma_{c t d}\left(J_{2, m}\right)=\left\lceil\frac{2 m}{3}\right\rceil$
If $3 i-2 \neq 2 m$, then $v_{2 m}$ is a isolate vertex in $\langle V-D\rangle$ so that $v_{2 m} \in D$.

$$
\text { Therefore } \begin{aligned}
|D| & =\left\lceil\frac{2 m}{3}+1\right\rceil \\
& =\left\lceil\frac{2 m}{3}\right\rceil+1
\end{aligned}
$$

Which contradicts the minimality
Let $D=\left[v_{2}, v_{5}, \ldots ., v_{3 i-1}\right]$ is a minimum ctd-set of $J_{2, m}$.
If $3 i-1=2 m$, then $|D|=\gamma_{c t d}\left(J_{2, m}\right)=\left\lceil\frac{2 m}{3}\right\rceil$
If $3 i-2 \neq 2 m$, then $v_{2 m}$ is a dominated by $v_{3 i-1}$ and v_{1} is dominated by v_{2}

$$
\text { Therefore }|D|=\gamma_{c t d}\left(J_{2, m}\right)=\left\lceil\frac{2 m}{3}\right\rceil
$$

Case (ii) $2 m=1(\bmod 3)$
Let $D=\left\{v_{3}, v_{6}, \ldots, v_{3 i}\right\}$ is a minimum ctd-set of $J_{2, m}$. Hence v_{1} is not dominated by D so that $v_{2 m} \in D$.

$$
\text { Therefore } \begin{aligned}
|D| & =\left\lceil\frac{2 m}{3}+1\right\rceil \\
& =\left\lceil\frac{2 m}{3}\right\rceil
\end{aligned}
$$

Let $D=\left[v_{1}, v_{4}, v_{7} \ldots ., v_{3 i-2}\right]$ is a minimum ctd-set of $J_{2, m}$.
If $3 i-2=2 m$, then D is a minimal ctd-set of $J_{2, m}$ then $|D|=\gamma_{c t d}\left(J_{2, m}\right)=\left\lceil\frac{2 m}{3}\right\rceil$
If $3 i-2 \neq 2 m$, then $v_{2 m}$ is a isolate in $\langle V-D\rangle$, so that $v_{2 m} \in D$.

$$
\text { Therefore } \begin{aligned}
|D| & =\left\lceil\frac{2 m}{3}+1\right\rceil \\
& =\left\lceil\frac{2 m}{3}\right\rceil+1
\end{aligned}
$$

Which contradicts the minimality
Let $D=\left[v_{2}, v_{5}, v_{8}, \ldots ., v_{3 i-1}\right]$
If $3 i-1=2 m$, then $|D|=\left\lceil\frac{2 m}{3}\right\rceil$
If $3 i-2 \neq 2 m$, then $v_{2 m}$ is a dominated by $v_{3 i-1}$ and v_{1} is dominated by v_{2}

$$
\text { Therefore }|D|=\left\lceil\frac{2 m}{3}\right\rceil
$$

Case (iii) $2 m=1(\bmod 3)$
Let $D=\left\{v_{1}, v_{4}, \ldots ., v_{3 i-2}\right\}$
If $3 i-2=2 m$ or $3 i-2=2 m-2$ then $|D|=\left\lceil\frac{2 m}{3}\right\rceil$
Let $D=\left\{v_{2}, v_{3}, \ldots, v_{3 i-1}\right\}$
If $3 i-1=2 m$ or $3 i-1=2 m-1$ then $|D|=\frac{2 m}{3}=\left\lceil\frac{2 m}{3}\right\rceil$
From the above three cases

$$
\gamma_{c t d}\left(J_{2, m}\right)=\left\lceil\frac{2 m}{3}\right\rceil \text {, for } m \geq 3
$$

Total Complementary tree domination of $\boldsymbol{J}_{2, m}$

Theorem 2.2 For $\mathrm{m}>3, \quad \gamma_{t c t d}\left(J_{2, m}\right)>\gamma_{c t d}\left(J_{2, m}\right)$
Proof:
Let D_{t} be a minimum tctd-set of $J_{2, m}$.
Case (i) m is odd
Let $D_{t}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots ., v_{2 m-1}, v_{2 m}\right\}$

$$
\begin{aligned}
\therefore\left|D_{t}\right| & =m+1 \\
i . e ., & =\frac{2 m}{2}+1 \\
= & \left\lceil\frac{2 m}{2}\right\rceil+1 \\
& =\left\lceil\frac{2 m}{2}\right\rceil
\end{aligned}
$$

Case (ii) m is even

Let $D_{t}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots, v_{2 m-1}, v_{2 m}\right\}$

$$
\begin{aligned}
\therefore\left|D_{t}\right| & =m \\
= & \left\lceil\frac{2 m}{2}\right\rceil
\end{aligned}
$$

Which is minimum tctd set of $J_{2, m}$.

$$
\begin{aligned}
\therefore \gamma_{c t d}\left(J_{2, m}\right) & =\left\lceil\frac{2 m}{2}\right\rceil>\left\lceil\frac{2 m}{3}\right\rceil \\
& =\gamma_{c t d}\left(J_{2, m}\right)
\end{aligned}
$$

Connected complementary tree domination of $\boldsymbol{J}_{2, m}$.

Theorem 2.3 For $\mathrm{m} \geq 3, \gamma_{\text {cctd }}\left(J_{2, m}\right)=2 m-2$
Proof. We know $\gamma_{c c t d}\left(C_{m}\right)=m-2$ for $m \geq 3$
Let $D_{c}=\left\{v_{1}, \ldots, v_{2 m-3}, v_{2 m+1}\right\}$. Where D_{c} is the minimum ctd-set of c.
Here $v_{2 m}$ is dominate by $v_{1}, v_{2 m-3}$ dominate $v_{2 m-2}$ and $v_{2 m-1}$ is dominate by $v_{2 m+1}$.

$$
\begin{aligned}
& \left|D_{c}\right|=2 m-3+1=2 m-2 \\
& \therefore \gamma_{c c t d}\left(J_{2, m}\right)=2 m-2
\end{aligned}
$$

References:

[1] K. Ali, E. T. Baskoro and I. Tomeseu, On the Ramzey number of Paths and Jahangir graph $J_{3, m}$. $3^{\text {rd }}$ International Conference on $21^{\text {st }}$ Century Mathematics 2007, GC University Lahoor Pakistan, March 2007.
[2] T. W. Haynes. S. T. Hedetniem, P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[3] S. T. Hedetniemi, R. Laskar, Domination in graphs, Graph Theory and Combinatories: Proceedings of the Cambridge Combinatorical Conference, Academic press, London, 1984.
[4] D. A. Mojdeh and A. N. Ghameshlou Domination in Jahangir Graph J2,m, Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 24. 1193-1199.
[5] S. Muthammai, M. Bhanumathi and P. Vidhya Complementary tree domination Number of a Graph, Int. Mathematical forum, Vol. 6, 2011, no. 26, 1273-1282.
[6] O. Ore, Theory of Graphs, Amer. Math. SOC, Collog. Public, 38, (1962).

